

Mining and Metallurgical Institute named after O.A. Baikonurov Department «Metallurgy and mineral processing»

EDUCATIONAL PROGRAM

6B07219 - Metallurgy of non-ferrous metals

Code and classification of the field of 6B07 - Engineering, manufacturing and

education: construction industries

Code and classification of areas of 6B072 - Manufacturing and processing

study: industries

Group of educational programs: B171 - Metallurgy

NQF level: 6
ORC level: 6

Training period: 4 years Volume of loans: 240

NNON-PROHITJOIN-E-STOCK COMPANY KKAZAKIN NAITIONA BRESEARCH TECHNICAL VINVERSITY namedfaftek K.S.SATBAYEV»

The education program «6B07219 – Metallurgy of non-ferrous metals» was approved at a meeting Academic Council of KazNRTU named after K.I. Satpayev.

Protocol № 4 dated «12 » 12 2024 y.

Reviewed and recommended for approval at a meeting of the Educational and Methodological Council of KazNRTU named after K.I. Satpayev.

Protocol № 3 dated «20» 12 2024 y.

The educational program «6B07219 — Metallurgy of non-ferrous metals» was developed by the academic committee in the direction of «6B072 — Manufacturing and processing industries».

Full name	Academic degree/ academic title	Job title	Place of work	Signature
Chairman of the Aca	demic Comn	nittee:		
Barmenshinova M.B.	c.t.s., associate professor	Head of the Department of MaMP	KazNRTU named after K.I. Satpayev	John
Teaching staff:				
Baigenzhenov O.S.	PhD doctor, associate professor	Professor of the Department of MaMP	KazNRTU named after K.I. Satpayev	0.6ae
Koishina G.M.	PhD doctor, associate professor	Associate professor of the Department of MaMP	KazNRTU named after K.I. Satpayev	Theishing
Employers:				
Ospanov E.A.	d.t.s.	Head of the Department of complex processing of technogenic raw materials	«Kazakhmys Corporation» LLP	Anef
Students:			1	
Asan M.D.	-	4 th year student	KazNRTU named after K.I.Satpaeva	Auf

Table of contents

List of abbreviations and designations

- 1. Description of the educational program
- 2. The purpose and objectives of the educational program
- 3. Requirements for the evaluation of learning outcomes of the educational program
 - 4. Passport of the educational program
 - 4.1. General information
- 4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines
 - 5. Curriculum of the educational program

List of abbreviations and symbols

NJSC «Kazakh National Research Technical University named after K.I. Satpayev» - NJSC KazNRTU named after K.I. Satpayev;

SOSE - State obligatory standard of education of the Republic of Kazakhstan;

MSaHE RK - Ministry of Science and Higher Education of the Republic of Kazakhstan;

EP - educational program;

IWS - independent work of a student (student, undergraduate, doctoral student);

IWST - independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC - working curriculum;

CED - catalog of elective disciplines;

UC - university component;

CC - component of choice;

NQF - National Qualifications Framework;

SQF - Sectoral Qualifications Framework;

LO - learning outcomes;

KC - key competencies;

SDG -Sustainable Development Goals.

1. Description of the educational program

It is intended for implementation of profile training of bachelors on educational program 6B07219 - "Metallurgy of non-ferrous metals" at Satbayev University and developed within the framework of the direction "Production and processing industries".

This document meets the requirements of the following legislative acts of the Republic of Kazakhstan and regulatory documents of the Ministry of Education and Science of the Republic of Kazakhstan:

- The Law of the Republic of Kazakhstan «On Education» with amendments and additions within the framework of legislative changes to increase the independence and autonomy of universities dated 04.07.18 No. 171-VI;
- The Law of the Republic of Kazakhstan «On Amendments and Additions to Some Legislative Acts of the Republic of Kazakhstan on the expansion of academic and managerial independence of higher educational institutions» dated 04.07.18 No. 171-VI:
- Order of the Minister of Education and Science of the Republic of Kazakhstan dated 30.10.18 No. 595 «On approval of Standard rules for the activities of educational organizations of appropriate types»;
- State mandatory standard of higher education (Appendix 7 to the Order of the Minister of Education and Science of the Republic of Kazakhstan dated 31.10.18 No. 604;
- Resolution of the Government of the Republic of Kazakhstan dated
 19.01.12 No. 111 «On approval of Standard rules for admission to education organizations implementing educational programs of higher education» with amendments and additions dated 14.07.16 No. 405;
- Resolution of the Government of the Republic of Kazakhstan dated
 December 27, 2019 No. 988 «On approval of the State Program for the
 Development of Education and Science of the Republic of Kazakhstan for 2020-2025»;
- Resolution of the Government of the Republic of Kazakhstan dated
 31.12.2019 No. 1050 «On approval of the State Program of Industrial and innovative Development of the Republic of Kazakhstan for 2020-2025»;
- «National Qualifications Framework» approved by the Protocol of 16.06.2016 by the Republican Tripartite Commission on Social Partnership and Regulation of Social and Labor Relations;
- Industry Qualifications Framework "Mining and Metallurgical Complex" dated 30.07.2019 No. 1;
- Strategy «Kazakhstan-2050»: a new political course of the established state. Message of the President of the Republic of Kazakhstan Leader of the Nation N.A. Nazarbayev to the people of Kazakhstan. Astana, 14.12.2012;
- «New development opportunities in the context of the Fourth Industrial Revolution». Message of the President of the Republic of Kazakhstan N. Nazarbayev to the people of Kazakhstan. 10.01.2018;

- «The third modernization of Kazakhstan: global competitiveness».
 Message of the President of the Republic of Kazakhstan N.Nazarbayev to the people of Kazakhstan. 31.01.2017

Introduction to the educational program. The development of an innovative economy initially forms the so—called double helices of interaction - between universities (science) and business, business and government, etc., which then form a «triple spiral». Within the framework of the triple helix model, interdisciplinary knowledge is generated, developed by interdisciplinary teams united for a short time to work on a specific problem of the real world. In the triple helix model, universities, along with educational and research functions, additionally increase entrepreneurial functions by actively participating in the cultivation of startups together with industry, stimulated by the state.

The concept of this scientific and educational program is based on the triple helix model, which involves the creation of innovative solutions based on interdisciplinary research and educational programs (Figure 1).

Figure 1 - The concept of scientific and educational programs

The previously established structure of education, based on in-depth training of specialists in narrowly focused specialization, has led to the emergence of interdisciplinary barriers and hindering the development of new "growth points" that are located at the junctions of disciplines.

Modern needs require graduates not only to have in-depth knowledge in their chosen field of science, but also to understand the mechanisms and tools for implementing their ideas in practice.

The program corresponds to the unified state policy of long-term socioeconomic development of the country, training of highly qualified personnel based on the achievements of science and technology, effective use of domestic scientific, technological and human resources potential of the republic.

The program is comprehensive and knowledge-intensive. The efficiency of using its results is of strategic importance for the republic.

The program is complex and science-intensive. The efficiency of using its results is of strategic importance for the republic.

The program is aimed at training specialists in key areas of the mining and metallurgical industry, adapted to the high-tech sectors of the economy of the Republic of Kazakhstan based on the development of priority areas of science and technology, development of knowledge-intensive industries, competitive technologies in the processing of technogenic raw materials and waste; capable of developing innovative technologies that minimize environmental damage and implement advanced methods of processing non-ferrous metals within the framework of the principles of sustainable development.

The developed Program is the basis for a coherent and flexible system of training of advanced scientific and innovative personnel combining deep fundamental knowledge with a broad scientific outlook and the ability to independently conduct research work with a comprehensive understanding of the main problems in the mining and metallurgical industry.

The benefits of the Program are:

- active involvement of talented students in priority research (fundamental) and scientific and technical (applied) works;
- student participation in priority scientific works, formation of new knowledge and skills, acquisition of professional work experience (seniority) to continue scientific research in master's and doctoral programs with the development of innovative technologies for the mining and metallurgical industry.

Training of specialists provides training in the main directions, each of which includes modern fundamental content necessary for training of highly qualified specialists demanded by the economy of the republic.

Educational program 6B07219 - "Non-ferrous Metallurgy" includes fundamental, natural science, general engineering and professional training of bachelors in the field of non-ferrous metallurgy in accordance with the development of science and technology, as well as the changing needs of the mining and metallurgical industry.

The distinctive feature of the program is that the program provides adaptation of the graduate to the industrial sector, due to the content of 40% of general engineering disciplines in the educational program.

The graduate receives a fundamental set of general engineering disciplines as well as a maximum set of specialized disciplines.

The program provides in-depth study of technological mineralogy, basics of mineral processing, general metallurgy, theory of metallurgical processes, metallurgy of heavy non-ferrous, noble, light, rare and disseminated metals, metallurgical heat engineering, metallurgical engineering (in English), heat and power engineering of metallurgical processes, alloying of non-ferrous metals, organization and planning of experiments, modern environmental schemes and forecasting in metallurgy.

The area of professional activity of graduates who have mastered the Bachelor's degree program includes:

- processes of beneficiation and processing of ores and other materials to produce concentrates and intermediates;

- processes of obtaining metals and alloys, metal products of required quality;
- Processing processes that change the chemical composition and structure of metals (alloys) to achieve certain properties.

A graduate of the program will be able to perform professional activities in the mining and metallurgical complex in engineering and working positions, at metallurgical enterprises, in design organizations, in metallurgical research centers.

Objects of professional activity of graduates, who have mastered the Bachelor's degree program are:

- processes and devices for enrichment and processing of mineral and technogenic raw materials with obtaining semi-products, production and processing of non-ferrous metals, as well as products made of them;
- processes and devices to ensure energy and resource conservation and environmental protection during technological operations;
- projects, materials, methods, instruments, installations, technical and regulatory documentation, quality management system, mathematical models;
 - design and research divisions, production divisions.

Types and tasks of professional activity of a graduate

List of professional activities and corresponding professional tasks:

Types of professional activities	Professional tasks
research activities	- carrying out experimental research;
	- performing literature and patent searches, preparing technical
	reports, information reviews, publications;
	- study of scientific and technical information, domestic and
	foreign experience on the subject of research;
project analysis	- performing technical and economic analysis of the
	development of projects of new and reconstruction of existing
	shops, industrial units and equipment;
	- analyzing designs and calculations of technological
	equipment;
	- analyzing design and working technical documentation;
	- development and analysis of mathematical models;
production activities	- realization of technological processes of enrichment and
	processing of mineral natural and man-made raw materials;
	- implementation of technological processes of obtaining and
	processing of metals and alloys, as well as products made of
	them;
	- implementation of measures to protect the environment from
	technogenic impacts of production;
	- implementation of measures to ensure product quality;
	- organization of workplaces, their technical equipment,
	placement of technological equipment;
	- control over observance of technological discipline;
	- organization of maintenance of technological equipment;
design and technological	- collection of information for feasibility studies and
activities	participation in the development of projects for new and
	reconstruction of existing shops, industrial units and
	equipment;

- calculation	and	design	of	elements	of	technological
equipment;						
- development	of des	ign and v	work	ing technic	al d	ocumentation;

2. Goal and objectives of the educational program

The purpose of EP 6B07219 - "Metallurgy of non-ferrous metals" is:

– training of competitive personnel with critical thinking, fundamental and applied knowledge, research skills in the field of non-ferrous metals metallurgy, capable of making comprehensive and effective decisions based on the principles of sustainable development in the processing of mineral raw materials from concentrates to metals and their compounds.

The objectives of EP 6B07219 - "Metallurgy of non-ferrous metals" are:

- Formation of skills and abilities to choose and evaluate methods of environmental protection from anthropogenic impact in urbanized areas;
- Strengthening the technological component of classical science education,
 to provide knowledge of modern technologies without lowering the bar of fundamental education;
- basics of development and carrying out fundamental and applied research in the field of non-ferrous metals metallurgy using new achievements of technologies, new generation techniques and ecomonitoring of enterprises;
- ensuring the interaction of fundamental and applied science with the educational process at all its stages, including the use of the results of joint research work in lecture courses, experimental base for the performance of educational and research, laboratory and course work, industrial and pregraduation practice;
- ensuring training and retraining of personnel for the domestic mining and metallurgical sector in close cooperation with state corporations and the real sector of the economy, employment of graduates in knowledge-intensive innovative companies and other research centers.
- development of methods to reduce the environmental impact of metallurgical production, including the treatment of emissions and waste.
- development of skills in the field of resource conservation, energy efficiency and the introduction of closed production cycles.

3 Requirements for assessment of learning outcomes of the educational program

Because of mastering the educational program of Bachelor's degree 6B07219 - "Metallurgy of non-ferrous metals», the graduate should have general cultural, general professional and professional competences.

A graduate who has mastered the Bachelor's degree program shall possess the following competencies:

general cultural competencies:

- ability to use the basics of philosophical knowledge, analyze the main stages and patterns of historical development to realize the social significance of their activities;
- the ability to use the basics of economic knowledge in assessing the effectiveness of the results of activities in various spheres;
- ability to communicate orally and in writing in Russian and foreign languages to solve problems of interpersonal and intercultural interaction;
- ability to work in a team, tolerantly accepting social, ethnic, confessional and cultural differences;
 - ability to self-organization and self-education;
 - ability to use general legal knowledge in various spheres of activity;
- ability to maintain an adequate level of physical fitness to ensure full social and professional activity;
- readiness to use basic methods of protection of production personnel and population from possible consequences of accidents, catastrophes, natural disasters.

general professional competencies:

- readiness to use fundamental general engineering knowledge;
- readiness to critically analyze the accumulated experience, to change the profile of one's professional activity if necessary;
 - ability to realize the social significance of his/her future profession;
 - readiness to combine theory and practice to solve engineering problems;
- ability to apply in practice the principles of rational use of natural resources and environmental protection;
 - ability to use normative legal documents in his/her professional activity;
- readiness to choose measuring instruments in accordance with the required accuracy and operating conditions;
- ability to follow metrological norms and rules, fulfill the requirements of national and international standards in the field of professional activity;
 - ability to use the principles of quality management system.

professional competencies, corresponding to the type(s) of professional activity for which the Bachelor's program is oriented:

research activities:

- ability to analyze and synthesize;
- ability to choose research methods, plan and conduct necessary experiments, interpret results and draw conclusions;

- readiness to use physical and mathematical apparatus to solve problems arising in the course of professional activity;
- readiness to use basic concepts, laws and models of thermodynamics, chemical kinetics, heat and mass transfer;
- ability to choose and apply appropriate methods of modeling physical, chemical and technological processes.

project and analytical activities:

- ability to perform technical and economic analysis of projects;
- ability to use the process approach;
- ability to use information tools and technologies in solving problems arising in the course of professional activity;
- readiness to make calculations and draw conclusions when solving engineering problems.

production and technological activities:

- ability to implement and adjust technological processes in metallurgy and material processing;
- readiness to identify objects for improvement in engineering and technology;
- ability to select materials for products of various purposes, taking into account operational requirements and environmental protection;
- readiness to assess risks and determine measures to ensure safety of technological processes.

design and technology activities:

- ability to perform elements of projects;
- readiness to use standard software tools in designing;
- ability to justify the choice of equipment for the implementation of technological processes.

additional competencies in the field of organizational and management activities agreed with employers:

- ability to apply methods of technical and economic analysis;
- readiness to use the principles of production management and personnel management;
- readiness to use organizational and legal bases of managerial and entrepreneurial activity;
 - ability to organize the work of the team to achieve the set goal.

additional general professional competencies (APCs) focused on knowledge areas: communication, individual and teamwork, lifelong learning, additional engineering skills:

- ability to acquire new, expand and deepen previously acquired knowledge, skills and competencies in various areas of life necessary for successful realization in the field of professional activity, including at the intersection of different areas of activity and fields of sciences.

Special requirements for graduation on this OP:

- the student should have a general idea of the thesis topic/research plans, and contact potential supervisors one year prior to expected graduation;

- a review meeting is held one year prior to expected graduation to introduce the student to potential supervisors and to expedite the student's selection of thesis/project topics;
- in order to collect the necessary data and study the actual tasks, methods and procedures on the topic of the thesis, the student undergoes an industrial practice;
- upon completion of the internship, the student shall contact the supervisor in writing or orally and report the results of the work, but not more than one week after the beginning of the 4th year of study;
- within 4 weeks of the start of the placement, the student and supervisor must discuss and decide on the type (research, project or independent study) and topic of the thesis. This is an extremely important discussion and decision, as it is impossible to change the topic and type of work any further;
- the topic of the thesis (project) and the supervisor are assigned to a student or a group of students no more than six weeks after the beginning of the final year of study and is approved by the order of the rector of the higher education institution.

4. Passport of the educational program

4.1. General information

No	Field name	Note
1	Code and classification of	6B07 - Engineering, manufacturing and construction
	the field of education	industries
2	Code and classification of	6B072 - Manufacturing and processing industries
	areas of study	
3	Group of educational	B171 - Metallurgy
	programs	
4	Name of the educational	6B07219 – Metallurgy of non-ferrous metals
	program	
5	Brief description of the educational program	is aimed at preparing graduates to carry out research, production-technological, design-analytical and design-technological types of professional activities in various areas of metallurgy and includes analysis and implementation of technological processes, operation and design of equipment in various areas of metallurgical production.
6	Purpose of the OP	training of competitive personnel with critical thinking, fundamental and applied knowledge, research skills in the field of non-ferrous metals metallurgy, capable of making complex and effective decisions in the processing of mineral raw materials from concentrates to metals and their compounds.
7	Type of OP	New
8	NQF level	6
9	ORC level	6
10	Distinctive features of the EP	no
11	List of competencies of the	Professional Competencies;
	educational program:	Research Competencies;
		Basic competencies and knowledge;
		Communicative competencies;
		General competencies;
		Cognitive competencies;
		Creative competences;
	_	Information and communication competencies.
12	Learning outcomes of the educational program:	LO1 - practicing knowledge of Kazakh, Russian and foreign languages to solve problems arising in the course of professional activity; LO2 - demonstrates knowledge of culture, basics of legal
		system and legislation of the Republic of Kazakhstan; LO3 - demonstrates fundamental knowledge and understanding of basic chemical laws in metallurgical
		processes;
		LO4 - implements and corrects technological processes in
		the non-ferrous metals industry, taking into account the
		principles of sustainable development, innovative
		approaches, efficient use of resources, minimizing

		environmental impact and strengthening partnerships in the field of sustainable production; LO5 - applies knowledge of physical and mathematical apparatus to solve production problems arising in technological processes of non-ferrous metals metallurgy; LO6 - performs professional function in the field of metallurgy, using methods of mathematical analysis and modeling, theoretical and experimental research; LO7 - applies in practice the principles of rational use of natural resources; the ability to develop and implement innovative technologies to reduce production emissions and rational use of raw materials. LO8 - argues for the choice of equipment for technological processes, taking into account the principles of sustainable development, the introduction of innovative solutions, the rational use of resources, reducing environmental impacts and the development of partnerships to ensure sustainable and responsible production; LO9 - applies applied software tools and modern methods of information processing in the sphere of professional activity; LO10 - applies experimental computational methods to solve various practice-oriented assignments of a research nature; LO11 - uses suitable modeling methods for physical, chemical and technological processes in metallurgy, taking into account the principles of sustainable development, innovation, rational use of resources, reduction of environmental impact and development of partnerships to achieve the goals of sustainable production; LO12 - Demonstrates knowledge in the field of scientific and technological innovation, skills and abilities to search, evaluate, select information.
13	Form of training	Full-time
14	Term of study	4 years
15	Loan volume	240
16	Languages of instruction	Kazakh, russian, english
17	Academic degree awarded	Bachelor of Engineering and Technology in the educational program «6B07219 – Metallurgy of non-ferrous metals»
18	Developers and authors:	Barmenshinova M.B. Dzhumankulova S.K.

4.2. The relationship between the achievability of the formed learning outcomes according to the educational program and academic disciplines

N₂	Name of the discipline	Brief description of the discipline	Amount of	Formed learning outcomes (codes) LO1 LO2 LO3 LO4 LO5 LO6 LO7 LO8 LO9 LO10 LO11 LO12											
			credits	LO1	LO2	LO3	LO4	LO5	LO6	LO7	LO8	LO9	LO10	LO11	LO12
		Cycle of general e	ducation dis	ciplin	es								,		
			component												
1	Foreign language	English is a compulsary subject. According to the results of		V											
		placement test or IELTS score, students are placed into													
		groups and disciplines. The name of the discipline													
		corresponds to the level of English.													
		When passing from level to level, prerequisites and													
		postrequisites are respected.													
	,	Kazakh (Russian) language	10	V											
	language	In this course author considers socio-political, socio-cultural													
		spheres of communication and functional styles of the													
		modern kazakh (russian) language. The course covers the													
		specifics of the scientific style to develop and activate professional communication skills and abilities of students.													
		Also it allows students to leavn the basics of scientific style													
		practically and develop the ability of production structural													
		and semantic text analysis.													
3	Physical Culture	The purpose of the discipline is to master the forms and	8	V											
	I hybrear curture	methods of forming a healthy lifestyle within the framework	o o	,											
		of the vocational education system. Familiarization with the													
		natural-scientific foundations of physical education,													
		possession of modern health technologies, basic methods of													
		independent physical education and sports. And also as part													
		of the course, the student will master the rules of judging in													
		all sports.													
4	Information and	The aim of the course is to gain theoretical knowledge in	5				V								
	Communication	information processing, the latest information technologies,													
	Technologies (in English)	local and global networks, the methods of information													
		protection; Getting the right use of text editor editors and													
		tabulators; creation of base and different categories of													
_	TT' CTZ 11	applications.			T.C.										
5	History of Kazakhstan	The purpose of the discipline is to provide objective historical			V										
		knowledge about the main stages of the history of													
		Kazakhstan from ancient times to the present day; to acquaint													
		students with the problems of the formation and development													

	1	<u> </u>					 1	1		
		of statehood and historical and cultural processes; to promote								
		the formation of humanistic values and patriotic feelings in								
		the student; to teach the student to use the acquired historical								
		knowledge in educational, professional and everyday life; to								
		assess the role of Kazakhstan in world history.								
6	Philosophy	The purpose of the discipline is to teach students the	5			V				
		theoretical foundations of philosophy as a way of cognition								
		and spiritual development of the world; developing their								
		interest in fundamental knowledge, stimulating the need for								
		philosophical assessments of historical events and facts of								
		reality, assimilating the idea of unity of the world historical								
		and cultural process while recognizing the diversity of its								
		skills of applying philosophical and general scientific								
		methods in professional activity.								
7	Socio-political knowledge	The objectives of the disciplines are to provide students with	3			V				
		explanations on the sociological analysis of society, about								
	political science)	social communities and personality, factors and patterns of								
	,	social development, forms of interaction, types and directions								
		of social processes, forms of regulation of social behavior, as								
		well as primary political knowledge that will serve as a								
		theoretical basis for understanding socio-political processes,								
		for the formation of political culture, the development of								
		personal position and a clearer understanding of the measure								
		of their responsibility; to help master the political-legal,								
		moral-ethical and socio-cultural norms necessary for								
		activities in the interests of society, the formation of personal								
		responsibility and personal success.								
8	Socio-political knowledge	The purpose of the disciplines is to study the real processes of	5		,	V				
		cultural activity of people who create material and spiritual	J			`				
	psychology)	values, to identify the main trends and patterns of cultural								
	psychologyy	development, the change of cultural epochs, methods and								
		styles, their role in the formation of a person and the								
		development of society, as well as to master psychological								
		knowledge for the effective organization of interpersonal								
		interaction, social adaptation in the field of their professional								
		activities.								
		Cycle of general ed	lucation die	cinline						
			it of choice		3					
9	The base of anti	Purpose: to increase the public and individual legal	5				V	V		
		wawareness and legal culture of students, as well as the								
	1	formation of a knowledge system and a civic position on								
	•							 	 	

		combating corruption as an antisocial phenomenon. Contents: improvement of socio-economic relations of the Kazakh society, psychological features of corrupt behavior, formation of an anti-corruption culture, legal responsibility for acts of corruption in various fields.									
	Economics and Entrepreneurship	Purpose: To develop basic knowledge of economic processes and skills in entrepreneurial activities. Content: The course aims to develop skills in analyzing economic concepts such as supply and demand, and market equilibrium. It includes the basics of creating and managing a business, developing business plans, risk assessment, and strategic decision-making.	5	V			V				
11	Fundamentals of research methods	Purpose: The goal of studying the discipline is to develop students' research skills; to introduce students to scientific knowledge, their readiness and ability to conduct research. Objectives of studying the discipline: to contribute to the deepening and consolidation of existing theoretical knowledge by students; to develop practical skills in conducting scientific research, analyzing the results obtained and developing recommendations; to improve methodological skills in independent work with information sources and appropriate software and hardware.	5	V				V			V
12	Ecology and life safety	Purpose: formation of ecological knowledge and consciousness, obtaining theoretical and practical knowledge on modern methods of rational use of natural resources and environmental protection. Contents: the study of the tasks of ecology as a science, the laws of the functioning of natural systems and aspects of environmental safety in working conditions, environmental monitoring and management in the field of its safety, ways to solve environmental problems; life safety in the technosphere, emergencies of a natural and man-made nature.	5			V		V			
13	Basies of financial	Purpose: formation of financial literacy of students on the basis of building a direct link between the acquired knowledge and their practical application. Contents: using in practice all kinds of tools in the field of financial management, saving and increasing savings, competent budget planning, obtaining practical skills in calculating, paying taxes and correctly filling out tax reports, analyzing financial information, orienting in financial products to choose adequate investment strategies.	5		V			V	V		

		Cycle of basic											
		University of	omponen	t			 						
14	Mathematics I	Purpose: to introduce students to the fundamental concepts of linear algebra, analytical geometry and mathematical analysis. To form the ability to solve typical and applied problems of the discipline. Contents_ Elements of linear algebra, vector algebra and analytical geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial derivatives. The extremum of a function of two variables.	5					V			V		V
15	Mathematics II	Purpose: To teach students integration methods. To teach you how to choose the right method for finding the primitive. To teach how to apply a certain integral to solve practical problems. Contents_ integral calculus of the function of one and two variables, series theory. Indefinite integrals, methods of their calculation. Certain integrals and applications of certain integrals. Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series, application of series to approximate calculations_	5					V			V		V
16	Physics	Purpose:To form ideas about the modern physical picture of the world and scientific worldview, the ability to use knowledge of fundamental laws, theories of classical and modern physics. Contents_ physical fundamentals of mechanics, fundamentals of molecular physics and thermodynamics, electricity and magnetism, vibrations and waves, optics and fundamentals of quantum physics.	5				V		V	V			V
17	Engineering and compute graphics	Purpose: To develop students' knowledge of drawing construction and skills in developing graphical and textual design documentation in accordance with standards. Content: Students will study ESKD standards, graphic primitives, geometric constructions, methods and properties of orthogonal projection, Monge's projection, axonometric projections, metric tasks, types and features of connections, creating part sketches and assembly drawings, detailing, and creating complex 3D solid objects in AutoCAD.	5		V				V				
18	Chemistry	Purpose: formation of knowledge on fundamental issues of general chemistry and skills of their application in professional activity. Summary Laws, theoretical propositions and conclusions that underlie	5			V						V	

19		chemical disciplines; properties and relationships of chemical elements based on the periodic law of D.I.Mendeleev and on modern ideas about the structure of matter; fundamentals of chemical thermodynamics and kinetics; processes in solutions; structure of complex compounds. Purpose: to form students' abilities to understand the physicochemical essence of processes and to use the basic laws of physical chemistry in complex industrial and technological activities. Contents: laws of thermodynamics; basic equations of chemical thermodynamics; methods of thermodynamic description of chemical and phase equilibria in	5	V	V				V	
		multicomponent systems; properties of solutions; fundamentals of electrochemistry; basic concepts, theories and laws of chemical kinetics and catalysis.								
20	Technological mineralogy	The purpose of studying the discipline is for students to study the basics of the theory of the formation of minerals in nature and their basic properties used in the production of various metals and basic raw materials of the Republic of Kazakhstan, as well as to instill skills in the active use of various types of literature. Contents: General information about the development of mineralogy and the structure of the earth. The formation of minerals and a brief description of rocks. Basic concepts of crystals. General properties of minerals and their classification. Silicates and carbonates. Oxides and hydroxides. Sulfides and sulfates. Tungsten and native metals. Halide compounds, phosphates and organic compounds. The concept of minerals and deposits. Properties of minerals used in ore dressing. Raw materials of the metallurgical industry and industrial classification of metals. Deposits of ferrous metal ores and alloys. Deposits of ores of non-ferrous and precious metals. Deposits of ores of rare, scattered, rare earth and radioactive metals.	4			V			V	
21	Basics of mineral deposits	Purpose: The purpose of teaching the discipline is for students to master the theory and practice of gravitational methods of enrichment of various types of mineral raw materials, to instill skills to analyze the operation of gravitational devices and solve relevant applied problems. Contents: Classification of gravitational enrichment methods. Properties of minerals and media used in gravitational	6	V		V		V		

		enrichment. The main patterns of movement of bodies in the environment. Theoretical foundations of gravitational enrichment processes. Hydraulic classification. Classification in the centrifugal field of forces. Enrichment of ores in heavy suspensions. Separators for the enrichment of ores in heavy suspensions. Ore dressing by jigging. Jigging machines. Theoretical regularities of enrichment in a stream of water flowing along an inclined surface. Enrichment on concentration tables and screw separators. Enrichment in centrifugal concentrators. Washing of ores. Pneumatic enrichment.									
	General metallurgy	Purpose: to form students' knowledge and skills in the field of metallurgy, to familiarize them with the main methods of metallurgical production, to teach them to analyze the conditions for the implementation of technological processes for the production of cast iron, steel, ferroalloys and nonferrous metals Contents: Production of cast iron and iron, production of steel, production of non-ferrous metals: metallurgy of copper; metallurgy of nickel; metallurgy of aluminum; production of other non-ferrous metals.	5			V	V			V	
23	Theory of metallurgical processes I	Purpose: to form students' systematic knowledge about the main metallurgical processes of processing oxidized and sulfide mineral and man-made raw materials, salt melts. Contents: laws, theoretical provisions and conclusions on the structure and properties of metallic, oxide and sulfide systems: thermodynamics and kinetics of metallurgical processing of oxidized and sulfide mineral and man-made raw materials, salt melts; liquation and distillation processes of production; metal refining methods and the main directions of development of the theory and practice of extraction and refining of metals, taking into account the complex the use of raw materials and modern environmental requirements.	5		V		V			V	
24	Metallurgical Process Theory II	Purpose: to form a systematic understanding of the theoretical foundations and technology of modern hydrometallurgical methods of complex extraction of metals from ore raw materials and metallurgical industrial products. Contents: Basic processes and operations in hydrometallurgy. Theoretical foundations and technological schemes of	5					V		V	V

		leaching processes. Thermodynamics and kinetics of leaching processes. Non-oxidative and oxidative leaching of metallurgical raw materials. Hydro- and electrometallurgical processing of sulfide materials. Theory and practice of extraction and sorption processes. Fundamentals of the deposition processes of poorly soluble compounds. Fundamentals of hydro- and electrometallurgical processes. Thermodynamics of electrochemical processes in the processing of metallurgical raw materials and the production of metals.							
25	Metallurgy of heavy non- ferrous metals	Purpose: To study the theoretical foundations of the extraction of heavy non-ferrous metals and technological schemes; to familiarize with the device and principles of operation of the devices used, operating parameters and process indicators, prospects for further development of technology Contents: Technological and theoretical foundations of metallurgical processes for the production of copper, nickel, lead and zinc. Properties of these metals and their compounds, preparation of raw materials for metallurgical processing. Pyrometallurgical and hydrometallurgical processing methods: roasting, melting, conversion, fire refining, leaching, purification of solutions, electrolysis and their hardware design. Methods of processing industrial products and new technologies to increase the complexity of the use of heavy non-ferrous metals in metallurgy.	5		V	V	V	V	
	Metallurgy of precious metals	Purpose: To study the basic methods of obtaining precious metals. Contents: Properties and scope of noble metals and their compounds. Sources of raw materials and the history of mining of precious metals (gold and silver). Types of ores, minerals, enrichment and preparation of raw materials for metallurgical processing. Theoretical foundations and practice of the processes of opening (decomposition) of minerals of indigenous and placer ores and extraction of precious metals from them. Refining of precious metals. Hardware design of the main processes. Methods of associated extraction of precious metals from industrial products and waste of metallurgical production. New technologies in the metallurgy of precious metals.	5	V				Y.C.	
_ 27	Metallurgical heat	The purpose of teaching the discipline is to acquire students '	5	V		V		V	

		knowledge in the field of heat engineering processes, as well as the theory of metallurgical furnaces, familiarization with the designs of furnaces, heat exchangers and heat generators, the ability to calculate fuel Gorenje, heat transfer characteristics, make thermal balances of metallurgical furnaces. Contents: Technical thermodynamics. Introduction to metallurgical heat engineering. Heat generation due to the chemical energy of fuel and electricity. The main provisions of the theory of heat transfer. Heat transfer by thermal conduivity. Heat transfer by convection. Heat exchange by radiation. Mechanics of liquids and gases. Fundamentals of similarity theory and modeling. Fundamentals of the general theory of furnaces. Thermal operation and designs of roasting and drying furnaces. Melting and casting furnaces. Refractory materials. Energy equipment. The use of secondary energy resources.						
28	Metallurgical Engineering (in English)	Purpose: Studying the theory of metallurgical processes, the main methods of enrichment of mineral raw materials, on the classification of metals and metallurgical processes and technologies, on methods of obtaining ferrous and nonferrous metals, when students perform a critical analysis of domestic and foreign, world literature of metallurgical profile in English. Content: Composition and properties of the gas phase. Thermodynamics of metallurgical processes. Theory of dissociation and strength of chemical compounds. Structure and properties of oxide and metallic melts. Fundamentals of interaction of metallic and oxide phases. Kinetics of processes. Preparation of raw materials for metallurgical process. Classification of metals. Metallurgy of ferrous metals. Production of pig iron and steel. Metallurgy of nonferrous metals. Hydrometallurgy. Pyrometallurgy. Metallurgical calculations.	5		V	V	V	
29		Purpose: To study the basic technologies of light metals production. Content: Metallurgy of aluminum. Production volumes and applications. Properties of aluminum. Raw material base of alumina and aluminum production. Production of alumina. Aluminum production. Magnesium production. Production volumes and applications. Properties of magnesium and its	5	V		V	V	

	compounds. Raw materials and their preparation. Theoretical bases of electrolytic production of magnesium. Titanium production. Production volumes and spheres of application. Properties of titanium and its compounds. Deposits and ores of titanium. Processing of ore raw materials. Smelting of titanium slags. Production of titanium tetrachloride. Metallothermic production of titanium. Titanium alloys.											
30 Organization and planning of experime	Objectives of the study: To form students' knowledge and	4			V	V			V			
31 Heat engineering of metallurgical process	Purpose: to teach students the methods of obtaining and	5			V						V	V
	Cycle of bas	ic discipline	es	1							I I	
32 Fundamentals of con	plex The purpose of studying the discipline "Technologies of	5	V		V		V					

	processing of polymotallic	mineral enrichment" is to form students' knowledge bases,									
	raw materials										
	law materials	develop professional skills and primary skills in the field of mineral enrichment technology.									
		Content: Non-ferrous metallurgy of the Republic of									
		Kazakhstan is distinguished by the variety of raw materials									
		used, complex technological schemes, large volumes of man-									
		made materials obtained, which must be efficiently processed									
		with the extraction of valuable components. Complex									
		processing of polymetallic raw materials for the production									
		of heavy non-ferrous metals. Complex processing of									
		polymetallic raw materials for the production of light metals.									
		Complex processing of polymetallic raw materials for the									
		production of rare metals. Non-ferrous metal ores are raw									
		materials for the production of small metals and scattered									
		elements. The effectiveness of the integrated use of raw									
		materials at non-ferrous metallurgy enterprises.									
33	Geotechnologies in	Purpose: Study of geotechnological methods of processing of	5				V		V		
	metallurgy	complex metallurgical raw materials.									
		Content: Geochemical processes in the Earth's crust.									
		Formation of minerals and deposits of non-ferrous and									
		ferrous metals. Methods of geotechnology. Possibilities of									
		metal extraction by geotechnological methods. Selection of									
		the method of geotechnological extraction of metals in									
		accordance with the nature and condition of ore reserves.									
		Underground, borehole and group leaching. Influence of the									
		nature of the reagent on metal recovery.									
34	Fundamentals of	Purpose: the goal is for students to master the theoretical	5								
	sustainable development	foundations and practical skills in the field of sustainable									
	and ESG projects in	development and ESG, as well as to develop an									
	Kazakhstan	understanding of the role of these aspects in the modern									
		economic and social development of Kazakhstan.									
		Contents: introduces the principles of sustainable									
		development and the implementation of ESG practices in									
		Kazakhstan, includes the study of national and international									
		standards, analysis of successful ESG projects and strategies									
		for their implementation in enterprises and organizations.									
35	ESG principles in	Purpose of the course: It focuses on studying ESG (Environm	ental Social	V	V	V		V			
	inclusive culture	Governance) principles and their interaction with the creation			·			,			
	The culture	culture within an organization. Content: Students will gain kn									
		implementing ESG principles contributes to corporate social i									
		sustainable development, and equal opportunities for all empl			000						
		sustamable development, and equal opportunities for all empl	yees, meno	այց ա	JSE .						

		who may face various forms of discrimination. The course will	holp studo	nte								
		understand the importance of an inclusive culture in achieving										
		goals and ensuring sustainable organizational development.	iong term t	Justifies	1							
20	Crasial alastuamatallumen	9 9	5			V		V	V		V	
36	Special electrometallurgy	Purpose: to form students' knowledge in the field of	5			\ \ \		V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V	
		theoretical and applied electrochemistry aimed at obtaining										
		and refining non-ferrous metals.										
		Contents: The history of development and the main										
		provisions of theoretical and applied electrochemistry. The										
		essence of the operation of a galvanic cell and an electrolysis										
		bath. Faraday's laws. Coulometers. Electrode potentials. The										
		EMF of the galvanic cell. Classification of electrodes. Electrocapillary and electrokinetic phenomena.										
		Electrochemical and diffusion kinetics. The joint discharge of ions. Electrocrystallization of metals at the cathode. Kinetics										
		of anodic dissolution of metals. Physico-chemical bases of										
		electrolysis of aqueous solutions and molten media.										
		Electroplating coatings using rare metals. Electrofining and										
		electrodeposition of copper from aqueous solutions of copper										
		sulfate. Electrolysis of nickel. Electroextraction of zinc and										
		lead. Electrolytic production of aluminum from cryolytic										
		alumina melt. Electrolytic production of magnesium and										
		sodium. Electrolysis of refractory rare metals. Electrolysis of										
		gold and silver. Prospects for the application of electrolysis in										
		modern metallurgy										
37	Technology of composite	Aim of study : acquisition by the students of knowledge in	5			V			V			V
	materials	the areas of receipt of composition materials, acquaintance										
		with classification, methods of determination and properties										
		of composition materials.										
		Short maintenance: Determination and classification of										
		composition materials. Basic concepts of mechanics of										
		composition materials : module of resiliency, durability,										
		destruction, chemical, thermal and mechanical stability.										
		Components used for the production of composition materials										
		: matrix and reinforcing materials and their receipt.										
38	Legal regulation of	Purpose: the goal is to form a holistic understanding of the	5	V	V	V	∇					
	interlineal property	system of legal regulation of intellectual property, including										
		basic principles, mechanisms for protecting intellectual										
		property rights and features of their implementation.										
		Content: The discipline covers the basics of IP law, including										
		copyright, patents, trademarks, and industrial designs.										
		Students learn how to protect and manage intellectual										

		property rights, and consider legal disputes and methods for										
		resolving them.										
39	Autogenous processes in metallurgy	Purpose: Study of autogenous processes of raw materials processing.	5					V		V	V	
	incumungy	Content: Issues of theory and practice of modern autogenous										
		processes of processing of non-ferrous metals raw materials										
		(KIVCET, PZHV, Outokumpu-Ou, QSL, Ausmelt, Isasmelt,										
		etc.). Process chemistry, peculiarities of sulfide oxidation,										
		process indicators, characterization of smelting products.										
		Technological schemes of productions, design and principle										
		of operation of metallurgical units, basic technical and										
		economic indicators of processes.										
40	Powder metallurgy	Purpose: the student acquires knowledge in the field of	5			V				V	V	
		production of powder materials, familiarization with their										
		basic properties and methods of production.										
		Contents: classification of methods for obtaining powder										
		materials. Mechanical methods for obtaining powder										
		materials. Reducers used in powder metallurgy. Preparation of powders by methods of reduction of chemical compounds										
		of metals. Examples of obtaining powdered metals by										
		methods of high-temperature reduction of chemical										
		compounds. Obtaining powder reduction materials from										
		solutions.										
41	Fundamentals of Artificia	Purpose: to familiarize students with the basic concepts,	5	V	V	V	V					
	Intelligence	methods and technologies in the field of artificial										
		intelligence: machine learning, computer vision, natural										
		language processing, etc.										
		Contents: general definition of artificial intelligence,										
		intelligent agents, information retrieval and state space										
		exploration, logical agents, architecture of artificial										
		intelligence systems, expert systems, observational learning,										
		statistical learning methods, probabilistic processing of										
		linguistic information, semantic models, natural language										
42	Dust collection and gas	processing systems. Purpose: to form students' knowledge of theoretical	C			V			V	V		
42	cleaning in non-ferrous	principles of operation, design features and operational	6			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ \ \	v		
	metallurgy	performance of apparatuses and schemes of plants for dust										
	inclairingy	collection and chemical purification of gases.										
		Content: The course "Dust collection and gas purification in										
		non-ferrous metallurgy" considers the processes occurring in										
		various gas cleaning devices, the design of dust collectors,										

		11. 10. 01				1		1	T T	- 1	1	
		conditions and features of their operation, as well as methods										
		of their calculation. The schemes used for purification of										
		gases from dust and harmful gaseous components in various										
		shops of ferrous and non-ferrous metallurgy enterprises are										
		studied.										
43	Metallurgical furnaces	Purpose: the formation of students systematized knowledge	6					V	V	V		
		of the main types of fuel and its combustion, classification										
		and general characteristics of the operation of furnaces,										
		materials used in furnace construction, the course program										
		provided for the study of elements and designs of a number										
		of furnaces used in non-ferrous and ferrous metallurgy.										
		Content: Classification of furnaces and modes of operation.										
		Thermal characteristics of furnace operation. Thermal										
		balance and fuel consumption. Refractory and insulating										
		materials, building elements of furnaces. Thermal insulation										
		materials. Furnace construction elements and materials.										
		Utilization of secondary energy resources. Thermotechnical										
		bases of various methods of waste gas heat utilization.										
		Metallurgical furnaces. Fuel furnaces of ferrous metallurgy.										
		Fuel furnaces of non-ferrous metallurgy. Furnaces of ferrous										
		metallurgy with heat generation by burning out metal										
		impurities. Nonferrous metallurgy furnaces with full or										
		partial use of chemical energy of raw materials. Thermal and										
		temperature modes of operation of the furnace for roasting										
		sulfide concentrates in a fluidized bed. Thermal and										
		temperature modes of operation of furnaces for smelting for										
		matte (autogenous processes). Electric furnaces. Special										
		furnaces. Furnaces for titanium production.										
		Cycle of specia	liand dissir	lines								
		University										
11	Metallurgy of rare and	Purpose: The field of technological methods for obtaining	4		V	7	n				V	
	disseminated metals	rare and diffuse elements from ore and anthropogenic raw	7		•	'					·	
	מוססכווווומוכע ווופנמוס	materials due to their chemical properties.										
		Content: The concept of "rare metals", the technical										
		classification of these metals. The position of rare earth										
		metals in the periodic table of elements of Mendeleev and the										
		features of the technology of obtaining rare metals. Physical										
		and chemical properties, applications, sources of raw										
		materials of rare metals. The main processes of processing										
		raw materials containing rare metals, with the production of										
		finished products in the form of chemical compounds or pure										

		metals. Physico-chemical bases and technology of production of scattered rare metals (rhenium, selenium, tellurium, germanium, gallium, indium, thallium), the characteristics of physical and chemical properties, areas of application of these metals are given. The methods of production of chemical compounds of dispersed metals from ore and secondary raw materials, the use of liquid extraction and ion exchange resins in the schemes of processing solutions, the issues of complex use of raw materials are considered. The methods of metal recovery from various compounds and the production of compact metals by melting and powder metallurgy methods are highlighted and compared.						
45	Non-ferrous metals alloys	The purpose of the study of the discipline is to study the basic provisions for obtaining alloys of non-ferrous metals: aluminum, magnesium, beryllium, titanium, copper, nickel, chromium, manganese, vanadium refractory metals, rare earth and radioactive metals and alloys based on them. Content: the main processes of smelting alloys of non-ferrous metals cover problems of a theoretical, technological and constructive nature in the field of traditional and new processes of metallurgy. Acquisition of competencies for the analysis of technologies for the production of metals, the development of technological schemes and designs of metallurgical units and the implementation of technological calculations.	5	V			V	V
	raw materials	Purpose: Study of the basic processes in hydrometallurgy. Theoretical foundations and technological schemes of leaching processes. Content: Modern methods of processing of secondary raw materials. New processes of additional extraction of nonferrous and valuable metals from secondary raw materials. Characteristics of secondary raw materials, features of the structure, forms of non-ferrous and valuable metals. Selection and justification of methods of processing of secondary raw materials, economic analysis and evaluation of their possible processing. Waste-free, environmentally friendly technologies for processing of secondary raw materials with complex extraction of valuable metals.	5	V	V			
47	Modern ecological schemes and forecasting in metallurgy	Purpose: Formation of knowledge in the field related to the creation of environmentally friendly metallurgical production, existing low-waste and environmentally friendly	6	V	V	<i>(</i>		

		technologies of production of ferrous and non-ferrous metals. Content: The main factors of impact of metallurgy on the environment. Consumption of primary and secondary resources. Saving of materials and energy. General principles of creation of ecologically clean metallurgy and requirements to it. Formation of ecological strategy at full cycle plants. Classification of man-made resources. Payment for environmental pollution. Assessment of ecological damage. Ecological and economic efficiency. Main tasks, objects, methods and classification of environmental monitoring						
		system. Environmental management system. Environmental						
		certification. Basic provisions of the series of standards and						
		certification for compliance with ISO 14000 standards.						
		Cycle of special		nes				
40	D 11 · ·	Componer	nt of choice			 <u> </u>		
48	Processes and devices in non-ferrous metallurgy	The aim is to provide students with the basic knowledge and skills necessary to solve theoretical and practical problems of hydromechanical, thermal, mass-exchange processes and powder metallurgy, allowing to justify the choice of technological process. Content: Physico-chemical basis and technology of nonferrous metals production from ore and secondary raw materials. Characteristics of starting materials, methods of charge preparation, pyro- and hydrometallurgical processing. Equipment, technical and economic indicators of modern metallurgical processes. Integrated use of raw materials, environmental protection, prospects for the development of						
	Theory and practice of metal refining	metallurgy. The purpose of the study: the acquisition by students of knowledge in the field of physico-chemical bases of the most significant methods of separation and purification of metals and their practical application. Summary: Methods for separation, concentration and purification of metals (extraction, ion exchange, electrolysis and electrodialysis, crystallization from solutions and melts, purification and separation of metals using vacuum and gasphase metallurgy methods, etc.), instrumentation of processes, engineering calculation Methods of cleaning metals.						
50	Processes of processing o technogenic waste	Purpose: To study the processes of processing of anthropogenic wastes						

Content: The course "Processes of processing of anthropogenic waste" considers the main ways of processing of anthropogenic raw materials of some heavy non-ferrous, noble, light and rare metals. In particular, the main sources of waste generation, their classification and characterization are considered. Modern schemes are given, the design of the main and auxiliary equipment for the preparation of waste for metallurgical processing is described. Modern pyro- and	
of anthropogenic raw materials of some heavy non-ferrous, noble, light and rare metals. In particular, the main sources of waste generation, their classification and characterization are considered. Modern schemes are given, the design of the main and auxiliary equipment for the preparation of waste for	
noble, light and rare metals. In particular, the main sources of waste generation, their classification and characterization are considered. Modern schemes are given, the design of the main and auxiliary equipment for the preparation of waste for	
waste generation, their classification and characterization are considered. Modern schemes are given, the design of the main and auxiliary equipment for the preparation of waste for	
considered. Modern schemes are given, the design of the main and auxiliary equipment for the preparation of waste for	
main and auxiliary equipment for the preparation of waste for	
metallurgical processing is described Modern pyro- and	
procuring four processing is described, intodern pyro und	
hydrometallurgical methods of processing anthropogenic	
wastes, basic technological schemes and hardware design of	
the processes of production of basic heavy, rare, light and	
noble metals from lump wastes, slags, dusts, sludge,	
industrial solutions and a number of other anthropogenic	
wastes are covered.	
51 Corrosion and protection The purpose of the study: to give students knowledge about	
of metals the interaction of metals with the environment around them,	
about the mechanism of this interaction; to teach the use of	
physico-chemical patterns to predict the corrosion resistance	
of metals, to apply appropriate protection methods.	
Contents: Classification of corrosion processes. Films on	
metals. The mechanism of diffusion in protective films.	
Electrochemical corrosion. Thermodynamics of	
electrochemical corrosion. Secondary processes and	
electrochemical products. Classification of protection	
methods. Methods of protection against chemical and	
electrochemical corrosion.	
52 Copper and nickel Purpose: Study of theoretical bases and technologies of	
metallurgy copper and nickel production by traditional and modern	
methods.	
Content: Technological schemes and processes of processing	
raw materials containing copper, nickel and other related	
valuable components; theoretical foundations of	
technological processes of metal production; designs of	
metallurgical units and principles of their operation,	
operating parameters and indicators.	
53 Production of special Purpose: Formation of knowledge about the properties of	
alloys special-purpose alloys; about the main methods of production	
of special alloys; about the physical basis and use of methods	
of obtaining alloys and materials with specified properties.	
Content: Classification of special alloys and the structure of	
alloys of the type of mechanical mixtures, type of chemical	

			1		1			
		compounds and type of solid solutions. The course also						
		studies the basics of theory and technology of production of						
		various high-temperature alloys and their properties. Methods						
		of direct synthesis and reduction, vapor deposition and						
		electrolysis, plasma and mechanical alloying are considered.						
		The structure and state diagrams of special-purpose alloys are						
		considered. The necessary information on iron-carbon,						
		titanium and copper, aluminum and magnesium, zinc, hard						
		and magnetic, heat-resistant and heat-resistant alloys, as well						
		as special steels and their applications are given.						
54	Metallurgy of lead and	Purpose: to form students' knowledge about the technological						
	zinc	features of lead and zinc metallurgy; modern production						
		processes of these metals, ensuring the integrated use of raw						
		materials, environmental protection, resource, energy						
		conservation and waste disposal.						
		Contents: Technological schemes and physico-chemical						
		bases of the processes of obtaining lead and zinc from ores,						
		concentrates and industrial products. Modern pyro- and						
		hydrometallurgical methods for the production of lead and						
		zinc, the main technological schemes and hardware design of						
		the production processes of these metals. The processes of						
		preparing raw materials for metallurgical conversion, the						
		processes of reducing melting in mine furnaces, the processes						
		of roasting, leaching, purification of solutions from						
		impurities, fire refining, electrolytic refining in aqueous						
		media to produce commercial lead and zinc. New						
		technologies in the production of lead and zinc.						
5!	Modern principles of	Purpose: Studying the principles of resource and energy						
	resource and energy	saving in metallurgy of rare metals						
	saving in metallurgy rare	Content: Basics of modern principles of resource and energy						
	metals	saving in metallurgy of rare metals: lithium, beryllium,						
		gallium; rare refractory metals: vanadium, titanium,						
		molybdenum, tungsten. Fundamentals of resource-saving						
		complex processing of rare and refractory rare metals.						
		Integrated processing of raw materials and waste production						
		of rare and refractory rare metals. Principles of energy						
		saving. Selection of technological schemes that allow for the						
		integrated use of natural raw materials of rare, refractory rare						
		metals, taking into account environmental requirements.						
56	Fundamentals of	Purpose: to form students' knowledge in the field of scientific						
		principles of the organization of technological design and						
ь	, 0 p	1					 	

	T		 	-	<u> </u>	 	 	 -	1	
	design	construction of metallurgical facilities, taking into account								
		the requirements of modern regulatory documents, current								
		instructions regulating a high level of standardization and								
		unification of standard projects and new design solutions for								
		the organization of planning and development of the territory								
		of an industrial area in the structure of the city, the territory								
		of a metallurgical facility, industrial buildings and building								
		structures.								
		Contents: General information about the design. The design								
		stages of industrial facilities. Pre-project documentation. The								
		composition of the design and estimate documentation. The								
		initial data for the design. Technological design of								
		metallurgical facilities. Selection and justification of the								
		hardware and technological scheme for the production of								
		commercial metals or its compounds in metallurgical plants.								
		Selection and calculation of equipment for metallurgical								
		plants. Introduction to the architectural and construction								
		design of industrial facilities. The placement of enterprises in								
		the structure of the city, their classification, grouping and								
		formation of industrial areas and nodes. Spatial planning								
		formation of the building of the factory territory. Building								
		methods. Types of construction objects. Entrances and								
		entrances to industrial facilities. Construction of the pre-								
		factory territory. Highways and driveways. Gaps between								
		buildings and structures. Design of industrial buildings. The								
		main structural elements of industrial buildings.								
		Transportation of metallurgical facilities. Engineering								
		networks and communications of metallurgical facilities.								
		Landscaping, elements of monumental and decorative art and								
		visual information in industrial enterprises.								
57	Technology of refractory	Purpose: to form knowledge in the field of refractory, thermal								
37	and heat-insulating	insulation and building materials, their properties and								
	materials	applications.								
	lilateriais	Contents: Classification of refractory materials. Raw								
1		materials for production. Refractory products. Schematic								
		diagram of the production and structure of refractories. The								
		structure of refractories. Working properties of refractory								
1		materials: fire resistance, gas permeability, dimensional								
1		stability, heat resistance, chemical resistance and slag								
		resistance. Physical properties of refractories: thermal								
		expansion coefficient, heat capacity, thermal conductivity,								

_			 	 	 	 	 	 	
		electrical conductivity. Characteristics of some refractory							
		materials (silica, aluminosilicate, chamotte, high alumina,							
		magnesia-based and others). Thermal insulation materials,							
		natural and artificial, their characteristics and the							
		requirements imposed on them. Classification and properties							
		of building materials: brick, concrete, crushed stone, sand,							
		varnishes, paints.							
58	Recycling technologies in	Purpose: Studying the technology of heavy non-ferrous							
		metals recycling, methods of waste processing for the							
	metallurgy	purpose of reuse of the obtained raw materials.							
		Content: Secondary raw materials of heavy non-ferrous							
		metals. Preparation of secondary raw materials of heavy non-							
		ferrous metals for metallurgical processing. Basics and							
		methods of pyro- and hydrometallurgical processing of							
		secondary raw materials of heavy non-ferrous metals.							
		Apparatus design of obtaining secondary heavy non-ferrous							
		metals. Technology of processing waste and secondary raw							
		materials of lead, copper, zinc, nickel. Auxiliary processes in							
		the production of secondary heavy non-ferrous metals.							
		Ecological and economic aspects of production of secondary							
		heavy non-ferrous metals.							
59		Purpose: formation of systematized knowledge, skills and							
	product design	abilities in the field of metallurgical processing, advanced							
		metallurgy and design of metallurgical products, final							
		metallurgical products.							
		Content: Processes and technologies of the 2nd stage –							
		refining of rough metals, production of steel and alloys,							
		methods of processing scrap metal. Processes and							
		technologies of the 3rd stage – metal processing by pressure							
		in order to obtain metal products of a given design. Processes							
		and technologies of the 4th stage – additional processing of							
		rolled products. Manufacture of hardware. Recycling of							
		diesel slags, as well as modern design methods using 3D							
1		modeling of products.							
60		Purpose: to prepare bachelors who are competent in the							
		theory and practice of metallurgical processes for the							
		extraction of small non-ferrous metals; to familiarize							
		themselves with modern production, the device and							
		principles of operation of the main units, operating							
		parameters and process indicators.							
		Contents: Bismuth metallurgy, properties and applications.							
	1	Contents. Dismuti metantingy, properties and applications.							

plans. Tin metallurgy, properties and applications. Smelling of tin from concentrates, refning of tin. 61 New technologies in metallurgy understanding of the basics of new metallurgical technologies, to get acquainted with new technologies in metallurgy. Contents: Chloride and autoclave methods of lead extraction. Autoclave treatment of low grade zinc concentrates. The latest technologies for the production of aluminum and its alloys. New metallothermal and electrochemical processes of titanium production. Technology of bioassay of coppercontaining raw materials, Solvent Extraction electrowinning (SX/EW). Extraction and sorption methods for the production of metals. Perplexing methods of ferrous metal production of metals. Perplexing methods of ferrous metal production. 62 Modeling of metallurgical Objective: to study the methodology based on economic and mathematical modeling and used in decision support systems. Contents: Introduction to modeling. General information about mathematical modeling. Modeling of deterministic processes. Stochastic models. Processing of initial results by interpolation and statistical methods (Newton's method). The concept of numerical methods for solving algebraic and differential equations. Numerical methods of unconditional optimization. Classification of conditional optimization problems. Linear programming. Problems of discrete optimization and dynamic programming. Definition of mathematical models. 63 Metallurgical systems Purpose to develop students' theoretical knowledge and practical skills in the field of metallurgical processes and systems research. Contents: Current state and development of physico-chemical			Extraction of bismuth from intermediate products of metallurgical production. Processing of bismuth ores and concentrates. Processing of complex concentrates containing bismuth. Purification (refining) of rough bismuth. Metallurgy of cadmium, properties and applications. Hydrometallurgical method for the production of cadmium. A mixed method for producing cadmium. Remelting and purification of rough cadmium. Metallurgy of cobalt, properties and applications. Production of cobalt from cobalt-containing copper concentrates. Extraction of cobalt from pyrite concentrates. Processing of cobalt concentrates from nickel electrolysis					
61 New technologies in metallurgy understanding of the basics of new metallurgical technologies, to get acquainted with new technologies in metallurgy. Contents: Chloride and autoclave methods of lead extraction. Autoclave treatment of low grade zinc concentrates. The latest technologies for the production of aluminum and its alloys. New metallothermal and electrochemical processes of titanium production. Technology of bioassay of coppercontaining raw materials, Solvent Extraction electrowinning (SX/EW). Extraction and sorption methods for the production of metals. Perplexing methods of ferrous metal production. 62 Modeling of metallurgical Objective: to study the methodology based on economic and mathematical modeling and used in decision support systems. Contents: Introduction to modeling, General information about mathematical modeling. Modeling of deterministic processes. Stochastic models. Processing of initial results by interpolation and statistical methods (Newton's method). The concept of numerical methods for solving algebraic and differential equations. Numerical methods of unconditional optimization. Classification of conditional optimization problems. Linear programming. Problems of discrete optimization and dynamic programming. Problems of discrete optimization and practical skills in the field of metallurgical processes and systems research.								
Modeling of metallurgical Objective: to study the methodology based on economic and processes mathematical modeling and used in decision support systems. Contents: Introduction to modeling. General information about mathematical modeling. Modeling of deterministic processes. Stochastic models. Processing of initial results by interpolation and statistical methods (Newton's method). The concept of numerical methods for solving algebraic and differential equations. Numerical methods of unconditional optimization. Classification of conditional optimization problems. Linear programming. Problems of discrete optimization and dynamic programming. Definition of mathematical models. Metallurgical systems Purpose: to develop students' theoretical knowledge and systems research.	61	_	Purpose: to develop professional competencies in the correct understanding of the basics of new metallurgical technologies, to get acquainted with new technologies in metallurgy. Contents: Chloride and autoclave methods of lead extraction. Autoclave treatment of low grade zinc concentrates. The latest technologies for the production of aluminum and its alloys. New metallothermal and electrochemical processes of titanium production. Technology of bioassay of coppercontaining raw materials, Solvent Extraction electrowinning (SX/EW). Extraction and sorption methods for the production					
Contents: Introduction to modeling. General information about mathematical modeling. Modeling of deterministic processes. Stochastic models. Processing of initial results by interpolation and statistical methods (Newton's method). The concept of numerical methods for solving algebraic and differential equations. Numerical methods of unconditional optimization. Classification of conditional optimization problems. Linear programming. Problems of discrete optimization and dynamic programming. Definition of mathematical models. 63 Metallurgical systems Purpose: to develop students' theoretical knowledge and practical skills in the field of metallurgical processes and systems research.	62	Modeling of metallurgical						
research practical skills in the field of metallurgical processes and systems research.			mathematical modeling and used in decision support systems. Contents: Introduction to modeling. General information about mathematical modeling. Modeling of deterministic processes. Stochastic models. Processing of initial results by interpolation and statistical methods (Newton's method). The concept of numerical methods for solving algebraic and differential equations. Numerical methods of unconditional optimization. Classification of conditional optimization problems. Linear programming. Problems of discrete optimization and dynamic programming. Definition of					
research practical skills in the field of metallurgical processes and systems research.	63	Metallurgical systems	Purpose: to develop students' theoretical knowledge and					
			practical skills in the field of metallurgical processes and systems research.					

_			 		 		 	
	methods for the study of metallurgical systems and processes:							
	methods for measuring temperatures, viscosity, density,							
	electrical conductivity and surface tension of melts,							
	measuring vapor pressure of metals and their compounds,							
	methods for quality control of metal products; fundamentals							
	of thermodynamic and kinetic analysis of pyrometallurgical							
	and hydrometallurgical processes							ļ

5. Curriculum of the educational program

 $NON-PROFIT JOINT STOCK COMPANY \\ "KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV"$

«APPROVED»
Decision of the A cademic Council
NPJSC«KazNRTU
named after K.Satbayev»
dated 06.03.2025 Minutes № 10

WORKING CURRICULUM

Academic year2025-2026 (Autumn, Spring)Group of educational programsB171 - "Metallurgy"Educational program6B07219 - "Metallurgy of non-ferrous metals"The awarded academic degreeBachelor of engineering and technologyForm and duration of studyfull time - 4 years

	e Name of disciplines			Total ECTS		lek/lab/pr	in hours SIS (including TSIS)		Allo	cation		ce-to- ses an					
Discipline code			Cycle		Total hours	Contact		Form of control	1 co	urse	2 co	urse	3 co	urse	4 co	urse	Prerequisites
				credits	nours	hours			1	2	3	4	5	6	7	8	
			C	CIFO	ECEN	EDAL ED	UCATION D	IECIDI IN	sem	sem	sem	sem	sem	sem	sem	sem	
			CI	CLE			of language		IES (GEL	')						
			GED,	-20													
LNG108	Foreign language		RC	5	150	0.0/45	105	Е	5								
LNG104	Kazakh (russian) language		GED, RC	5	150	0.0/45	105	E	5								
LNG108	Foreign language		GED, RC	5	150	0.0/45	105	Е		5							
LNG104	Kazakh (russian) language		GED, RC	5	150	0.0/45	105	Е		5							
M-2. Module of physical training																	
KFK101	Physical culture I		GED, RC	2	60	0.0/30	30	Е	2		6 63		9 8		00 0		
KFK102	Physical culture II		GED, RC	2	60	0.0/30	30	Е		2	8 88		5 8		60 6		
KFK103	Physical culture III		GED, RC	2	60	0.0/30	30	Е			2						
KFK104	Physical culture IV		GED, RC	2	60	0/0/30	30	Е				2					
M-3. Module of information technology																	
CSE677	Information and communication technology		GED, RC	5	150	30/15/0	105	E			5						
	S) (4)			M	-4. Mo	dule of so	cio-cultural o	developme	nt	10 X							55 FF
HUM137	History of Kazakhstan		GED, RC	5	150	15/0/30	105	GE		5							
HUM134	Module of socio-political knowledge (cultural studies, psychology)		GED, RC	5	150	30/0/15	105	E			5				80 0		
HUM132	Philosophy		GED, RC	5	150	15/0/30	105	Е		P	19	5					
HUM120	Module of socio-political knowledge (sociology, political science)		GED, RC	3	90	15/0/15	60	Е			. 10	3	9 9				
			M-5. N	Iodule o	of anti-	corruption	n culture, ec	ology and	life s	afety	bas	e					
CHE656	Ecology and life safety	1	GED, CCH	5	150	30/0/15	105	Е				5					
MN G489	Fundamentals of economics and entrepreneurship	1	GED, CCH	5	150	30/0/15	105	Е				5					
PET519	Fundamentals of scientific research methods	1	GED, CCH	5	150	30/0/15	105	Е				5					
HUM136	Fundamentals of anti-corruption culture and law	1	GED, CCH	5	150	30/0/15	105	Е				5					
MNG564	Basics of Financial Literacy	1	GED, CCH	5	150	30/0/15	105	Е				5					
					CYCLE	OF BAS	IC DISCIPL	INES (BD)								
				M-6. N	lodule	of physic:	al and mathe	ematical to	raini	ng							
MAT101	Mathematics I		BD, UC	5	150	15/0/30	105	Е	5						(S) 0		

PHY468	Physics		BD, UC	5	150	15/15/15	105	Е	5							
MAT102	Mathematics II		BD, UC	5	150	15/0/30	105	Е		5						MAT101
					M-	7. Modul	e of basic tra	ining								
GEN429	Engineering and computer graphics		BD, UC	5	150	15/0/30	105	E	5							
CHE494	Chemistry		BD, UC	5	150	15/15/15	105	E		5						
AAP173	Practical training		BD, UC	2				R		2						
CHE127	Physical chemistry		BD, UC	5	150	15/15/15	105	Е				5				
MET514	Fundamentals of complex processing of polymetallic raw materials	1	BD, CCH	5	150	30/0/15	105	Е					5			
MET657	Geotechnology in metallurgy	1	BD, CCH	5	150	30/0/15	105	Е					5			
MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan	1	BD, CCH	5	150	30/0/15	105	Е					5			
CHE950	ESG principles in inclusive culture	1	BD, CCH	5	150	30/0/15	105	Е					5			
MET518	Special electrometallurgy	1	BD, CCH	5	150	30/0/15	105	E						5		
MET611	Technolodgy of composite materials	1	BD, CCH	5	150	30/0/15	105	Е						5		
MNG562	Legal regulation of intellectual property	1	BD, CCH	5	150	30/0/15	105	E						5		
MET652	Autogenous processes in metallurgy	2	BD, CCH	5	150	30/0/15	105	E						5		
METS99	Powder metallurgy	2	BD, CCH	5	150	30/0/15	105	E						5		
CSE831	Fundamentals of Artificial Intelligence	2	BD, CCH	5	150	15/0/30	105	Е						5		
MET653	Dust collection and gas cleaning in non-ferrous metallurgy	1	BD, CCH	6	180	30/0/30	120	Е							6	
MET612	Metallurgical fumaces	1	BD, CCH	6	180	30/0/30	120	Е							6	
				N	I-8. Bas	ic trainin	g module in	metallurg	y							
MET501	Technological mineralogy		BD, UC	4	120	30/15/0	75	Е	4							
MET163	Basics of mineral deposits milling		BD, UC	6	180	30/15/15	135	Е			6					MET155, MET153, MET152, GEO113, MET175, MET1801
MET500	General metallurgy		BD, UC	5	150	30/0/15	105	Е			5					
MET619	Theory of metallurgical processes I		BD, UC	5	150	30/15/0	105	E			5					
MET503	Metallurgy of heavy non-ferrous metals		BD, UC	5	150	30/15/0	105	Е				5				
MET596	Theory of metallurgical processes II		BD, UC	5	150	30/15/0	105	Е				5				
MET510	Metallurgy of precious metals		BD, UC	5	150	30/0/15	105	Е					5			
MET620	Metallurgical heat engineering		BD, UC	5	150	30/15/0	105	Е					5			MET429
MET621	Metallurgical engineering (in English)		BD, UC	5	150	30/0/15	105	E					5			
MET654	Metallurgy of light metals		BD, UC	5	150	30/15/0	105	E					5			
MET658	Organization and planning of experiment		BD, UC	4	120	30/0/15	75	Е					4			
MET622	Heat engineering of metallurgical processes		BD, UC	5	150	30/0/15	105	E						5		PHY 112
	CYCLE OF PROFILE DISCIPLINES (PD)															
				M-9.	Module	of profes	sional activi	ty in meta	llurg	y						
MET655	Metallurgy of rare and dispersed metals		PD, UC	4	120	30/0/15	75	E						4		
MET656	Non-ferrous metal alloys		PD, UC	5	150	30/0/15	105	Е							5	

MET508	Metallurgy of secondary raw materials		PD, UC	5	150	30/15/0	105	E		'					5	'	
MET498	Modern ecological schemes and forecasting in metallurgy		PD, UC	6	180	30/0/30	120	E							6		MET429
					M-10). Professi	ional activity	module		_					_		
AAP102	Production practice I		PD, UC	2				R				2					
AAP183	Production practice II		PD, UC	3				R		Ĺ'				3		Ĺ	
MET524	Processes and devices in non-ferrous metallurgy	1	PD, CCH	5	150	30/0/15	105	Е	Ľ	L'	<u></u>	<u> </u>		5		L'	
MET497	Theory and practice of metal refining	1	PD, CCH	5	150	30/15/0	105	Е		Ĺ'				5			METII7
MET456	Processes of processing of technogenic waste	2	PD, CCH	4	120	30/0/15	75	Е		Ĺ'				4			MET413, MET429, MET430, MET454
MET659	Corrosion and protection of metals	2	PD, CCH	4	120	30/15/0	75	Е		Ĺ'				4	Ĺ	Ĺ'	
MET194	Copper and nickel metallurgy	1	PD, CCH	6	180	30/15/15	120	Е	L'	Ĺ'	<u> </u>	<u> </u>	<u> </u>	Ľ	6	<u></u> _ '	MET413, MET429, MET430, MET454
MET422	Production of special alloys	1	PD, CCH	6	180	30/0/30	120	Е		<u></u>	<u> </u>	<u> </u>		Ľ	6	<u></u>	MET117, MET187
MET529		2	PD, CCH	5	150	30/15/0	105	Е		<u></u>		'	<u> </u>		5	<u>_</u> '	
MET692	Modern principles of resource and energy saving in metallurgy of rare metals	2	PD, CCH	5	150	30/0/15	105	Е			<u> </u>	'		Ľ	5	<u>_</u> '	
MET575	Fundamentals of metallurgical production design	1	PD, CCH	5	150	30/0/15	105	Е		<u></u>	<u> </u>	<u> </u>		Ľ		5	
MET594	Technology of refractory and heat-insulating materials	1	PD, CCH	5	150	30/0/15	105	Е								5	
MET545	Recycling technologies in heavy non-ferrous metals metallurgy	2	PD, CCH	5	150	30/15/0	105	Е								5	
MET582	Advanced metallurgy and product design	2	PD, CCH	5	150	30/0/15	105	Е		Ľ						5	
MET455	Metallurgy of small metals (Cd, Co, Bi, etc.)	3	PD, CCH	4	120	30/0/15	75	Е		Ľ						4	MET413, MET429, MET430, MET454
MET697	New technologies in metallurgy	3	PD, CCH	4	120	30/0/15	75	Е								4	
						M-11. Mo	odule of "R&	∠D"									
MET558	Modelling of metallurgical processes	1	PD, CCH	5	150	30/0/15	105	E								5	
MET583	Metallurgical systems research	1	PD, CCH	5	150	30/15/0	105	Е								5	
_ '	·				M-1	2. Modul	e of final atte	estation									
ECA 103	Final examination		FA	8	<u> </u>				\square		\Box'				\square	8	
- '					Addi	itional ty	pe of training	g (ATT)									
AAP500	Military training			[<u></u> '	<u>['</u>												
	Total base	ad on []]	STVERS	TTV.					31	29	28	32	29	31	33	27	
Total based on UNIVERSITY:									6	60	6	60	6	60	6	60	

Number of credits for the entire period of study

Cycle code	Cycles of disciplines	Credits												
Cyde dde	Cycles of disciplines	Required component (RC)	University component (UC)	Component of choice (CCH)	Total									
GED	Cycle of general education disciplines	51	0	5	56									
BD	Cycle of basic disciplines	0	91	21	112									
PD	Cycle of profile disciplines	0	25	39	64									
	Total for theoretical training:	51	116	65	232									
FA	Final attestation				8									
	TOTAL:				240									

 $Decision\ of\ the\ Education\ al\ and\ Methodological\ Council\ of\ KazNRTU\ named\ after\ K. Satpayev.\ Minutes\ Ne\ 3\ dated\ 20.12.2024$

Decision of the Academic Council of the Institute. Minutes № 4 dated 12.12.2024

Signed:

Governing Board member - Vice-Rector for Academic Affairs

Approved:

Vice Provost on academic development

Head of Department - Department of Educational Program Management and Academic-Methodological Work

Director - Mining and Metallurgical Institute named after O.A. Baikonurov

Department Chair - Metallurgy and mineral processing

Representative of the Academic Committee from Employers
____Acknowledged____

Uskenbayeva R. K.

Kalpeyeva Z. Б.

Zhumagaliyeva A. S.

Rysbekov K..

Barmenshinova M. .

Ospanov Y. A.

